Spanning Subset Sums for Finite Abelian
نویسنده
چکیده
منابع مشابه
Counting subset sums of finite abelian groups
In this paper, we obtain an explicit formula for the number of zero-sum k-element subsets in any finite abelian group.
متن کاملMaximal subsets of pairwise non-commuting elements of some finite p-groups
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملCounting MSTD Sets in Finite Abelian Groups
In an abelian group G, a more sums than differences (MSTD) set is a subset A ⊂ G such that |A+A| > |A−A|. We provide asymptotics for the number of MSTD sets in finite abelian groups, extending previous results of Nathanson. The proof contains an application of a recently resolved conjecture of Alon and Kahn on the number of independent sets in a regular graph.
متن کاملSets with More Sums than Differences
Let A be a finite subset of the integers or, more generally, of any abelian group, written additively. The set A has more sums than differences if |A + A| > |A − A|. A set with this property is called an MSTD set. This paper gives explicit constructions of families of MSTD sets of integers.
متن کامل